

2019年12月13日 更新

C2000-A2-SDD4040-AD1 使用说明书

RS485 = 4DI + 4DO 脉冲计数 远程 I/O 模块 — RS485 型开关量模块

目录

目录	2
1. 快速使用	4
1.1. 使用前准备	4
1.2. 设备接线	4
1.3. 软件设置及设备调试	5
1.3.1. 设备搜索及参数设置	5
1.3.2. 设备调测	6
2. 硬件说明	8
2.1. 技术参数	8
2.2. 产品外观	10
2.3. 指示灯	11
2.4. 端口说明	12
2.5. 尺寸	13
2.6. 安装方式	13
3. 产品功能	14
3.1. D 采 集	14
3.1.1. DI采集类型	14
3.2. DO控制	14
3.2.1. DO状态	14
3.2.2. DO上电状态	14
3.3. 其他功能 3.3.1. DI脉冲计数	14 14
3.3.2. 滤波器参数	14 14
3.3.3. DI自动清零	14
3.3.4. DO工作模式	14
4. 软件操作	16
4.1. 软件安装	16
4.2. 软件界面及功能介绍	16
4.3. 软件使用	17
4.3.1. 设置设备串口参数	17
4.3.2. 设备状态查看	18
4.3.3. 设备状态控制	19
5. 通信协议	21
5.1. 寄存器列表	21
5.2. 协议应用范例	24
5.2.1. 读DO状态(0x01)	24
5.2.2. 写DO状态(0x0F) 5.2.3. 写单个DO状态(0x05)	25 26
5.2.4. 读DI状态(0x02)	27
5.2.5. 读DI正脉冲有效状态(0x03)	28
5.2.6. 写单个DI正脉冲计数(0x06)	29
5.2.7. 写DO工作模式(0x10)	29
6. 装箱清单	31
7. 产品服务	32

【版权声明】

©2000 - 2019 中联创新版权所有

【商标声明】

及其它中联创新服务相关的商标均为深圳市中联创新自控系统有限公司及其关联公司所有。本文档涉及的第三方主体的商标,依法由权利人所有。

【免责声明】

本文档仅提供有关康耐德产品的信息。本文档并未授予任何知识产权的许可,包括未以明示或暗示、以禁止发言或其他方式授予任何知识产权许可。除深圳市中联创新自控系统有限公司在其产品的销售条款和条件中声明的责任之外,深圳市中联创新自控系统有限公司不承担任何其他责任;并且深圳市中联创新自控系统有限公司对康耐德产品的销售或使用不作任何明示或暗示的担保,包括对产品特定用途适用性、适销性、对任何专利权、版权或其他知识产权的侵权责任等,均不作担保。

深圳市中联创新自控系统有限公司可能随时对产品规格及产品描述做出修改,恕不另行通知。

【联系方式】

深圳市中联创新自控系统有限公司

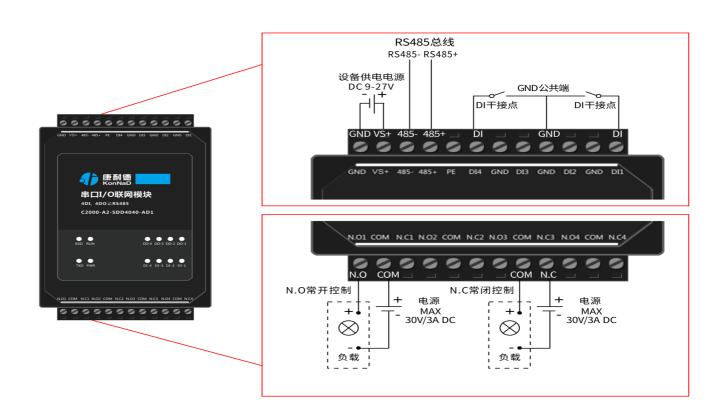
地 址:深圳市福田区彩田路中银大厦 A 座 16 楼

官 网: www.konnad.com 电 话:0755-88865168

1. 快速使用

本章节"快速使用"可使用户快速了解及使用产品,了解产品接线、配套软件安装、产品参数设置及调试(查看状态及控制状态)。

1.1. 使用前准备


IO设备使用前需额外准备转换器、电源、螺丝刀及电脑等相关辅件,具体见下表所示:

类型	产品准备	其他辅件准备
硬件	A2-SDD4040-AD1设备一台(下文统称"IO设备")	另需USB转485转换器一个;导线若干; 9~27VDC电源一个。
软件	《康耐德设备设置工具》安装包	电脑一台,已预装Windows操作系统

软件包下载地址:https://www.konnad.com/download?file=sdk 服务与下载-->下载中心-->软件 & SDK-->康耐德设备设置工具

1.2. 设备接线

将IO设备按如下接线示意图接上需要采集/控制的IO设备,需要外接电源:

设备上电后,电源指示灯PWR红色常亮,运行指示灯RUN闪烁,设备供电正常。

DI(干接点)接线测试:使用一根导线短接DI1和GND,可看到设备DI-1指示灯亮,断开灯灭。

DO接线测试:先通过USB转RS485转换器将电脑与IO设备连接,通过配套软件设置参数后发送命令测试。如:将软件上的点值 "DO1状态"写1使DO1闭合(N.O1与COM导通),则DO-1灯亮;写0使DO1断开(N.O1与COM断开),则DO-1灯灭。写 "1"或 "0"时能听到继电器 "闭合"或 "断开"声响。

1.3. 软件设置及设备调试

在参数设置前请按如下操作安装好软件包,将已完成**上一步骤**的IO设备用USB转RS485转换器连接至电脑,打开安装好的《康耐德设备设置工具》,搜索设备并进行参数设置。参数设置成功后,对设备的DI/DO的状态变化进行测试,验证设备能正常通讯。

软件包安装:1.下载软件压缩包;2.软件压缩包右键属性-->常规-->解除锁定(无此项时忽略本步骤);3.软件压缩包解压缩-->KonNaD.Setup.exe右键"以管理员身份运行安装"即可。

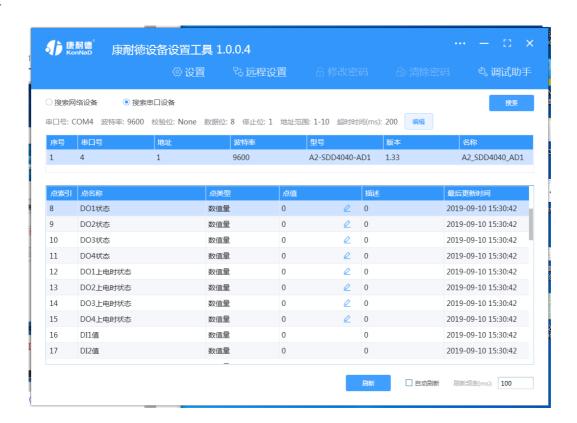
软件包安装若出现问题参考 软件操作 内容。

1.3.1. 设备搜索及参数设置

打开《康耐德设备设置工具》,选择 **搜索串口设备**,在显示搜索串口参数处点击 **编辑**,选择电脑上USB转RS485转换器的串口号及IO设备的串口参数(设备默认的串口参数为9600,None,8,1;RS485地址为1,初次搜索地址范围可以设置1-10),再点击 **搜索**可以搜索到IO设备。鼠标点选需要设置的设备,点击 **设置** 在弹出的对话框可以设置设备的串口参数,初次调测设备可以不修改设备的默认串口参数。

如下为搜索IO设备及设置串口参数图示:

特别提示:搜索时如果搜索不到IO设备


- 1. 确认是否按照以管理员权限安装和运行;
- 2. 检查USB转RS485转换器与IO设备是否连接正确,转换器是否故障;
- 3. 搜索串口参数波特率、数据位、停止位、校验位及RS485地址是否填写正确(设备默认的串口参数为9600,None,8,1;RS485地址为1)。

1.3.2. 设备调测

设备参数设置成功后,重新搜索设备,点击软件左下角"**刷新**",可以看到设备的所有点值信息。 其中DI1~DI4值为设备采集DI的开关状态(读取1为采集开关量闭合,0断开);

DO1~DO4状态为DO输出是否导通和断开(1为COM和N.O导通,0为COM和N.O断开)。如点击DO1状态点值后图标,写1或0来控制DO1状态输出。

如下图示:

【更多相关信息】详细软件操作见 "**软件操作**" ; 若需上位机/软件对接开发(二次开发)详见 "**通信协议**"

中的寄存器信息。

2. 硬件说明

2.1. 技术参数

	参数名称	规格	
DI 输入	DI 路数	4	
	连接端	凤凰端子	
	接口类型	干接点	
	DI 输入模式	电平 + 脉冲计数	
	数字滤波时间间隔	6个采样周期	
	采集频率	1kHz	
DO 输出	DO 路数	4	
	连接端	凤凰端子	
	DO 输出类型	C 型继电器	
	DO 输出模式	电平+脉冲	
	触点容量	30V/3A	
向上串行接口	串口类型	RS485	
	端口数量	1	
	连接端	凤凰端子	
	通讯协议	Modbus RTU 协议	
电源	电源连接端	凤凰端子	
	输入电压	9~27VDC	
	电流	80mA @ 12VDC	
物理特征	尺寸	75*105*30mm	
	安装方式	定位孔/导轨安装	
工作环境	工作温度	-40°C ~ 85°C	
	存储温度	-60°C ~ 125°C	

相对湿度	5% ~ 95% RH 不凝露

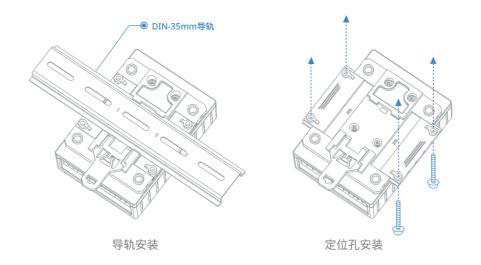
2.2. 产品外观

2.3. 指示灯

类别	指示灯	说明	含义
DI 输入	DIx 开关量输入指示灯		常亮: DI 有输入/输入电压 > 临界电压
			熄灭:DI 无输入/输入电压 < 临界电压
DO 输出	DOx	开关量输出指示灯	常亮: DO有输出
			熄灭:DO无输出
向下串行接口	RXD	RS485 数据接收指示灯	常亮:RS485 线路故障,请检查 RS485 线路正负极是否接反
			闪烁:RS485 端口正在接收数据
			熄灭:RS485 端口未接收数据
	TXD	RS485 数据发送指示灯	闪烁:RS485 端口正在发送数据
			熄灭:RS485 端口未发送数据
电源	PWR	电源指示灯	常亮:设备供电正常
			熄灭:设备未通电或供电异常,请检查电压是否为 9-27VDC
运行	行 RUN 设备运行		常亮:程序异常
			闪烁:运行正常,间隔 1s 闪烁
			熄灭:程序异常

2.4. 端口说明

类别	端口	说明	建议线材
DI 输入	DIx	数字量信号输入端	RVV 2*0.5
	GND	干接点输入公共端	RVV 2*0.5
DO 输出	N.Ox	数字量信号输出常开端	RVV 2*1.0
	COMx	数字量信号输出公共端	RVV 2*1.0
	N.Cx	数字量信号输出常闭端	RVV 2*1.0
向上串行接口	485+、485-	RS485 正极、RS485 负极(向上)	RVSP 2*0.5
电源输入	VS+、GND	电源输入正极、电源输入负极	RVV 2*1.0
	PE	用于设备可靠接地,防雷	RVV 2*0.5



2.5. 尺寸

单位:mm(inch)

2.6. 安装方式

3. 产品功能

3.1. DI采集

3.1.1. DI采集类型

干接点:短接DI和GND, DI点值为1;断开连接, DI点值为0。

注: DI状态起始寄存器地址为10200(0xC8), 无符号整型, 读取DI状态使用0x02功能码。

3.2. DO控制

3.2.1. DO状态

DO状态:通过此寄存器可控制对应继电器动作,写0后COM和NC导通,写入值1后COM和NO导通。

注: DO状态起始寄存器地址100(0x64),无符号整型,读DO状态使用0x01功能码,0x05写单个DO,0x0F同时写多个DO状态。

3.2.2. DO上电状态

DO的上电状态控制设备刚上电没有接到外部控制命令时继电器的状态,写0表示设备刚上电时COM和NC导通,写入值1表示刚上电时COM和NO导通。

3.3. 其他功能

3.3.1. DI脉冲计数

1) 正/负脉冲有效状态、DI正/负脉冲计数

DI正/负脉冲状态:指示当前输入的脉冲状态,开关断开时对应的正脉冲状态寄存器值被置为1,开关闭合时对应 负脉冲寄存器值被置为1。写入值为0,则清除检测到的脉冲状态,其他值写入无效。

DI正/负脉冲计数:正/负脉冲变化的次数,检测脉冲变化的个数。可写入初始值,写入后可从初始值开始计数到最大值65535,到最大值后从0开始重新计数。

2) 电平变化计数

电平变化计数:正/负脉冲变化的次数之和,可写入初始值,写入后可从初始值开始计数到最大值65535。到最大值后从0开始重新计数。

3.3.2. 滤波器参数

设置DI采集时输入信号必须保持几个采样周期才能被确认。默认值为0x6,表示需要6个采样周期开关量状态才能被确认。此值可根据现场情况适当的修改。

3.3.3. DI自动清零

设置为自动清零,则DI正/负脉冲计数、DI电平计数值每次读取后值会自动清除。

设置为手动清零,则DI正/负脉冲计数、DI电平计数值每次检测不会清除,需要手动清除。(手动写入值0即可清除)

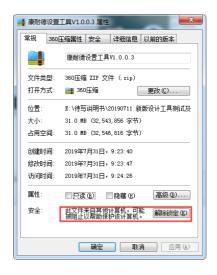
3.3.4. DO工作模式

DO输出可设置为电平模式和脉冲模式。

电平模式:继电器的通断状态必须通过命令才能改变。

脉冲模式:设置为脉冲模式后,继电器会在一定的时间内自动将NO和COM导通的状态变为NC和COM导通的状

态,时间可通过脉冲宽度设置,脉冲宽度可设置范围为50~65535毫秒。



4. 软件操作

4.1. 软件安装

此操作前需确保设备正确接线并已上电,将RS485型IO设备用USB转RS485转换器连接到电脑端,使用《康耐德设备设置工具》对IO设备进行设置和调试,通过软件可以更改IO设备的485地址、串口参数及查询控制IO的状态等。《康耐德设备设置工具》为IO设备设置及调试工具,如需组态软件请咨询客服。

下载软件安装包后需先检查压缩包的属性是否有"解除锁定"提示,如有请先解除锁定后解压安装,如不先解除锁定直接解压安装程序,将导致软件运行异常。(锁定原因:由于使用浏览器下载的可执行程序时,可能会被电脑系统自带的SmartScreen筛选器锁定权限,从而导致设置程序无法正常工作。如遇此类情况需先对安装包解除锁定,再进行解压安装。)

解压安装包后,软件安装需右键**以管理员的权限运行**安装程序目录中的"KonNaD.Setup.exe",然后在安装向导的指引下即可对程序进行安装。

软件无法运行或闪退解决方法:找到电脑桌面软件快捷键图标-->右击属性-->兼容性-->勾选以管理员身份运行 此程序-->应用-->确定-->再次打开软件。

4.2. 软件界面及功能介绍

菜单栏功能介绍

"设置":用于设置网络型IO设备的网络参数或RS485型IO设备串口参数;

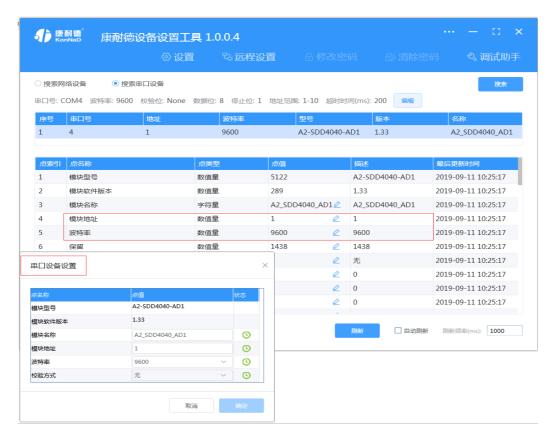
"远程设置":对于网络型IO设备,当已配置设备IP为局域网内网段但设备跨多个路由,搜索不到时,可以通过远程设置修改设备参数。对于RS485型IO设备无效;

"修改/清除密码":修改和清除网络型IO设备密码;

"调试助手":包含网络调试、串口调试、模拟量换算和进制转换工具;

"搜索网络/串口设备" : 可以选择搜索网络型IO设备或RS485型IO设备,根据具体是哪种类型的产品点击"搜索"按钮进行搜索;

"监听设置": 当网络型IO设备作为客户端时,可以设置调试软件作为服务器端的监听端口号;


"刷新":点击"刷新"按钮可以获取设备当前点值状态,或勾选"自动刷新"可以连续获取点值状态信息。

4.3. 软件使用

4.3.1. 设置设备串口参数

打开《康耐德设备设置工具》,选择 **搜索串口设备**,在显示搜索串口参数处点击 **编辑**,选择电脑上USB转 RS485转换器的串口号及IO设备的串口参数(设备默认的串口参数为9600,None,8,1; RS485地址为1,初次搜索地址范围可以设置1-10),再点击 **搜索** 可以搜索到IO设备。鼠标点选需要设置的设备,点击 **设置** 在弹出的对话框可以设置设备的串口参数。

串口参数设置:

模块地址: RS485站号地址, RS485总线有多个IO模块时用于区别设备, 地址范围1-255;

波特率:可以设置设备的波特率,范围1200-115200;

校验方式:可设置设备的校验方式。

上述除通过搜索设备点击 **设置** 设置串口参数外,还可以通过点击软件左下角"**刷新**"获取设备点值后,如通过"模块地址"点值处图标修改相应的参数。

4.3.2. 设备状态查看

确保搜索到设备后,点击软件左下角"刷新",可以看到设备点值信息,如下图示:

- 1、DI1~DI4值为DI状态(读取1为采集开关量闭合,0断开);
- 2、DO1~DO4状态为DO输出是否导通和断开(1为COM和N.O导通,0为COM和N.O断开);
- 3、DI1~DI4正/负脉冲计数,检测脉冲变化的个数,可读写。当设置DI1~DI2自动清零为自动时,脉冲计数每次读取后自动清除。当设置DI1~DI2自动清零为手动清零,每次读取后不会一直累加计数(累计最大为65535后归零),需要手动清除(手动写入值0即可清除)。

4.3.3. 设备状态控制

DO工作模式可选择电平模式或脉冲模式,平台可通过改变DO状态点值来改变IO设备数字量输出状态。

当DO为电平输出时,例如:如点击DO1状态点值后图标,写1时DO1指示灯点亮。写0时DO1指示灯熄灭。 当DO为脉冲输出时,可通过设置DO脉冲宽度来控制DO状态。例如:设置DO1脉冲宽度为6000,改变DO1点值 为1,则DO1灯点亮,6s后灯熄灭。

DO上电状态可控制,当DO为电平输出时,设置DO上电状态为1,将设备断电上电后,DO灯点亮。

5. 通信协议

5.1. 寄存器列表

寄存器地址	个数	寄存器内容	状态	数据范围	适用的功能码
40001	1	模块型号	R	按模块型号配置,见型 号定义表	0x03
40002	1	模块软件件版本	R	例如5.2,高字节为主版本,低字节为次版本	0x03
40003	10	模块名称	RW	最长的名字为20个字 节,包括'\0'	0x03 , 0x10
40013	1	模块地址	RW	数据范围 1 - 255,默 认值为1	0x03 , 0x06 , 0x10
40014	1	波特率代码	RW	见波特率代码表,默认值为3,即9600。注:1.在匹配波特率时,即9600。注:1.在匹配波特率时,通者本时,通者本时读,即40014,个器必存器,即40014,个数5(包波特率的,以版本3.5(包波特率的,以版本3.5(包波特率的,它是波特率的,等存码,是波特率的,等存器,即40014,个数方1。修改后,总线并不回应。	0x03 , 0x06 , 0x10

40015	1	AI参数恢复默认 参数	W	只对带AI的模块有效,写入后恢复AI的配置参数。对其他不带AI的模块无效。	0x06 , 0x10
40016	1	保留寄存器	RW	保留。	0x03 , 0x06 , 0x10
40017	1	奇偶校验寄存器	RW	0,表示无校验(默认) 1,表示奇校验2,表 示偶校验写入其他值 表示无反应。	0x03 , 0x06 , 0x10
40018	1	重启寄存器	W	第一次写入0xa55a, 第二次在2s之内写 入0x5aa5,系统重启	0x06 , 0x10
40019	1	写保护寄存器	W	写入0x5A01	0x06 , 0x10
100	4	DO1~DO4的状态	RW	0x00-0x01,保存DO1~DO4的当前状态;写则改变DO的当前状态,读则代表读取当前DO的状态	0x01 , 0x05 , 0x0F
104	4	DO1~DO4的上 电状态	RW	0x00-0x01,设 置DO的上电状态,写 入后,下次重启 后,DO的状态即为设 置的状态	0x01 , 0x05 , 0x0F
10200	4	DI1~DI4的值	R	0x00-0x01 , 表示DI的 当前电平信号	0x02
40300	4	DI1~DI4正脉冲 有效状态	RW	0x0000-0x0001,0表示还没产生有效的正脉冲,1表示产生了有效的正脉冲。写0清零,其他值无效	0x03 , 0x06 , 0x10

40304	4	DI1~DI4负脉冲 有效状态	RW	0x0000-0x0001,0表示还没产生有效的负脉冲,1表示产生了有效的负脉冲。写0清零,其他值无效	0x03 , 0x06 , 0x10
40308	4	DI1~DI4正脉冲 计数	RW	0x0000-0xFFFF,可 以写入任意值,写入 后,从写入的值开始 计数	0x03 , 0x06 , 0x10
40312	4	DI1~DI4负脉冲 计数	RW	0x0000-0xFFFF,可以写入任意值,写入后,以写入的值开始计数	0x03 , 0x06 , 0x10
40316	4	DI1~DI4电平变 化计数	RW	0x0000-0xFFFF,可 以写入任意值,写入 后,从写入的值开始 计数	0x03 , 0x06 , 0x10
40320	4	DI1~DI4滤波器 参数	RW	信号必须保持几个采用周期才能被确认。 默认值0x6,6个采样周期才能被确认。范围0x0001-0xFFFF,写入0值返回失败。	0x03 , 0x06 , 0x10
40324	1	DI1~DI4自动清零	RW	设置读取后自动清零,默认所有通道自动清零;该寄存器相应的bit位为1表示对应通道自动清0,为0表示手动清0。	0x03 , 0x06 , 0x10
40325	4	DO1~DO4工作 模式	RW	为0表示电平模式, 为1表示脉冲模式,其 他模式暂时保留,写 入其他值返回失败。	0x03 , 0x06 , 0x10

40329 4 DO1~DO4的脉 RW 最小值为50,即输 0x03,0x06,0x10 决宽度 出50ms的脉冲;最大 宽度为65535ms的脉 冲。 冲。
--

备注:修改串口参数前,需要写保护寄存器,写入0x5A01后,10S内即可进行修改串口参数及名称地址。 波特率代码表:

寄存器值	波特率
0x0000	波特率 1200
0x0001	波特率 2400
0x0002	波特率 4800
0x0003	波特率 9600
0x0004	波特率 19200
0x0005	波特率 38400
0x0006	波特率 57600
0x0007	波特率 115200

5.2. 协议应用范例

5.2.1. 读DO状态(0x01)

以同时采集4路DO为例进行说明,假设C2000-A2-SDD4040-AD1的485地址已经设置为1,命令如下:

0x<mark>01<mark>01</mark>0064<mark>0004</mark>7C16</mark>

命令解析:

静音	01	01	0064	0004	7C16	静音
起始结构	从设备地址	功能码	起始寄存 器地址	寄存器个 数	CRC 校验码	结束结构
≥3.5 个字 符的静止 时间	1字节,设 备的485地 址	1字节,01, 读寄存器	2字节,要 开始读取 的寄存器 地址	2字节 , 需要读取 的寄存器 个数	2字节,CRC16	≥3.5 个字 符的静止 时间

假设C2000-A2-SDD4040-AD1的通道DO1-DO2为闭合状态,通道DO3-DO4断开状态,设备返回的命令为:

0x<mark>01<mark>01</mark>01<mark>03</mark>1189</mark>

命令解析:

静音	01	01	01	03	1189	静音
起始结构	从设备地址	功能码	数据长度	数据	CRC 校验 码	结束结构
≥3.5 个字 符的静止 时间	1字节,设 备的485地 址	1字节,01, 读寄存器	1字节 , 高字节 在前	4个DO使用1 字节数 据,03二进 制表示为 0011,根据 位,1表示断 开,0表示闭 合	2字节,低字 节在前	≥3.5 个字 符的静止 时间

5.2.2. 写DO状态(0x0F)

写DO状态时,可以往寄存器里面写0或者是写1,写0断开写1闭合,假设设备的485地址已经设置为1。 将DO1-DO2闭合,DO3-DO4断开,命令如下:

0x<mark>010F</mark>0064<mark>000401</mark>030F5F

静音	01	OF	0064	0004	01	03	0F5F	静音
起始 结构	从设备地 址	功能码	起始 寄存 器地 址	寄存 器个 数	数据 长度	数据	CRC 校 验码	结束 结构
≥3.5 个字 符的 静止 时间	1字节 , 设备 的485地 址	1字 节 , 0x0F , 写寄存器	2字节要始取寄器址	2字 节需读的存个 双寄器数	1字 节,高字在前	4个DO使用 1字节数 据,03二进 制表示为 0000 0011, 根据位,1 表示闭 合,0表示 断开	2字节, CRC16	≥3.5 个字 符 静 止 时间

若设备正常执行命令,返回数据如下:

0x<mark>010F0064</mark>000415D7

命令解析:

静音	01	0F	0064	0004	15D7	静音
起始结构	从设备地址	功能码	起始寄存 器地址	寄存器个 数	CRC 校验 码	结束结构
≥3.5 个字 符的静止 时间	1字节 , 设 备的485地 址	1字节 , 0x0F , 写寄存器	2字节,高 字节在前	2字节 , 高 字节在前	2字节,低 字节在前	≥3.5 个字 符的静止 时间

5.2.3. 写单个DO状态(0x05)

写DO状态时,可以往寄存器里面写FF00或者是写0000,写0000断开写FF00闭合。假设设备的485地址已经设置为1。

将DO1闭合,命令如下:

0x<mark>0105</mark>0064<mark>FF00</mark>CDE5

命令解析:

静音	01	05	0064	FF00	CDE5	静音
起始结构	从设备地址	功能码	起始寄存 器地址	数据	CRC 校验 码	结束结构
≥3.5 个字 符的静止 时间	1字节,设 备的485地 址	1字节,05, 写单个寄存 器	2字节,要 开始读取 的寄存器 地址	FF00表示 闭合状态	2字节, CRC16	≥3.5 个字符 的静止 时间

若设备正常执行命令,返回数据如下:

0x<mark>01<mark>05</mark>0064<mark>FF00</mark>CDE5</mark>

静音	01	05	0064	FF00	CDE5	静音
起始结构	从设备地址	功能码	起始寄存器 地址	数据	CRC 校验 码	结束结构

≥3.5 ′	个字 1字节,设	1字节,05,	2字节,要	FF00表示	2字节,	≥3.5 个字符
符的静	金山 备的485地	写单个寄存	开始读取的	闭合状态	CRC16	的静止 时间
时间	址	器	寄存器地址			

将DO1断开命令: 01 05 00 64 00 00 8C 15 将DO2闭合命令: 01 05 00 65 FF 00 9C 25 将DO2断开命令: 01 05 00 65 00 00 DD D5

其余通道命令相似。

5.2.4. 读DI状态(0x02)

以同时采集4路DI为例进行说明,假设C2000-A2-SDD4040-AD1的485地址已经设置为1,命令如下:

0x <mark>01<mark>02</mark>00C8<mark>0004</mark>F837</mark>

命令解析:

静音	01	02	00C8	0004	F837	静音
起始结构	从设备地址	功能码	起始寄存 器地址	寄存器个 数	CRC 校验码	结束结构
≥3.5 个字 符的静止 时间	1字节,设 备的485地 址	1字节,02, 读寄存器	2字节,要 开始读取 的寄存器 地址	2字节 , 需要读取 的寄存器 个数	2字节,CRC16	≥3.5 个字 符的静止 时间

假设C2000-A2-SDD4040-AD1的通道DI1-DI2已经闭合,通道DI3-DI4断开,设备返回的命令为:

0x<mark>010201<mark>03</mark>E189</mark>

静音	01	02	01	03	E189	静音
起始结构	从设备地址	功能码	数据长度	数据	CRC 校验 码	结束结构

	字节,设 1字节,02, 6的485地 读寄存器 t	1字节 , 高字节 在前	4个DI使用1 字节数 据,03二进 制表示为 0011,根据 位,1表示闭 合,0表示断 开	2字节,低字 节在前	≥3.5 个字 符的静止 时间
--	----------------------------------	--------------------	--	---------------	-----------------------

5.2.5. 读DI正脉冲有效状态(0x03)

以同时采集4路DI正脉冲有效状态,假设C2000-A2-SDD4040-AD1的485地址已经设置为1,命令如下:

0x<mark>01<mark>03</mark>012C<mark>0004</mark>843C</mark>

命令解析:

静音	01	03	012C	0004	843C	静音
起始结构	从设备地址	功能码	起始寄存 器地址	寄存器个数	CRC 校验码	结束结构
≥3.5 个字 符的静止 时间	1字节,设 备的485地 址	1字节,03, 读寄存器	2字节,要 开始读取 的寄存器 地址	2字节, 需要读取 的寄存器 个数	2字节,CRC16	≥3.5 个字 符的静止 时间

假设C2000-A2-SDD4040-AD1的通道DI1-DI2产生有效的正脉冲,通道DI3-DI4没有产生有效的正脉冲,设备返回的命令为:

0x<mark>01<mark>03</mark>08<mark>0001000100000000</mark>B8D7</mark>

静音	01	03	08	0001000100000000	B8D7	静音
起始结 构	从设备地 址	功能码	数据长度	数据	CRC 校 验码	结束结构
≥3.5 个 字符的 静止 时 间	1字节,设 备 的485地 址	1字 节,03, 读寄存器	8字 节 , 高 字节在 前	4个DI的正脉冲有效状态,每两个字节表示一个DI通道,顺序是从DI1到DI4,0001表示产生了正脉冲,0000表示未产生正脉冲	2字节,低 字节在前	≥3.5 个 字符的静 止 时间

5.2.6. 写单个DI正脉冲计数(0x06)

写DI1正脉冲计数时,可以往寄存器里面写入任意值,假如写入65535,假设设备的485地址已经设置为1。

命令如下:

0x<mark>0106</mark>0134FFFFC848

命令解析:

静音	01	06	0134	FFFF	C848	静音
起始结构	从设备地址	功能码	起始寄存 器地址	数据	CRC 校验码	结束结构
≥3.5 个 字符的 静止 时 间	1字节,设 备的485地 址	1字 节,06,写 单个寄存器	2字节 , 要开始读 取的寄存 器地址	1个DI正脉冲 计数,每两个 字节表示一个 DI通道,FFFF 表示写入DI正 脉冲计数为 65535个	2字节,CRC16	≥3.5 个字 符的静止 时间

若设备正常执行命令,返回数据如下:

0x<mark>0106</mark>0134FFFFC848

命令解析:

静音	01	06	0134	FFFF	C848	静音
起始结构	从设备地址	功能码	起始寄存 器地址	数据	CRC 校验 码	结束结构
≥3.5 个 字符的 静止 时 间	1字节 , 设 备的485地 址	1字节,06, 写单个寄存 器	2字节,要 开始读取 的寄存器 地址	1个DI正脉冲计数,每两个字节表示一个DI通道,FFFF表示写入DI正脉冲计数为65535个	2字节, CRC16	≥3.5 个字 符的静止 时间

5.2.7. 写DO工作模式(0x10)

写DO工作模式时,可以往寄存器里面写0或者是写1,写0为电平模式写1为脉冲模式,假设设备的485地址已经设置为1。

将DO1-DO2设置为脉冲模式, DO3-DO4为电平模式, 命令如下:

0x<mark>01</mark>10<mark>0145<mark>0004</mark>080001000100000000<mark>94C8</mark></mark>

命令解析:

静音	01	10	0145	0004	08	0001000100000000	94C8	静音
起始 结构	从设备 地址	功能码	起始 寄存 器地 址	寄存器个数	数据长度	数据	CRC 校验码	结束 结构
≥3.5 个字 符的 静止 时间	1字节 , 设备 的485地 址	1字 节 , 0x10 , 写寄存器	2节 要 始 取 寄 器 址字, 开 读 的 存 地	2字 节需读的存外	1字 节, 高字 节 前	4个DO工作模式,每个使用2字节数据,0001表示脉冲模式,0000表示电平模式	2字节, CRC16	≥3.5 个字 符的 静止 时间

若设备正常执行命令,返回数据如下:

0x<mark>01<mark>10</mark>0145<mark>0004</mark>D1E3</mark>

静音	01	10	0145	0004	D1E3	静音
起始结构	从设备地址	功能码	起始寄存 器地址	寄存器个 数	CRC 校验 码	结束结构
≥3.5 个字 符的静止 时间	1字节 , 设 备的485地 址	1字节,0x10, 写寄存器	2字节,高 字节在前	2字节,高 字节在前	2字节,低 字节在前	≥3.5 个字 符的静止 时间

6. 装箱清单

序号	名称
1	主设备(包含扣具)
2	凤凰端子(若干)
3	安装指引卡

7. 产品服务

您所购买的产品在正常使用的情况下,凡是由原材料或生产过程中造成的质量问题,自购买之日起提供免费保修服务。凡是由于用户不按本产品说明书要求,自行安装、拆卸或不正确使用而造成的损坏,本公司提供维修服务,但收取适当维修费。保修期限如下表:

产品类别	保修年限
带壳	6年
不带壳	3年

注:产品配件不提供保修服务。

保修条例:

- 1. 自购买产品之日起,在正常使用的情况下(由公司授权技术人员判定),在保修期限内,对发生故障的产品进行免费维修。
- 2. 在保修期内曾经由我公司以外的维修人员修理或更改过的产品、或安装不当、输入电压不正确、使用不当、意外事件或自然 灾害等原因引起的故障的产品不属于保修范围。
- 3. 在接受保修服务前,需要客户出示保修卡或购买发票来证明产品购买日期。无法确认日期的将不予保修。
- 4. 所有保修或维修的产品,用户承担运费和运送时的风险。
- 5. 超过保修期或不符合保修条件的产品,本公司提供收费维修。
- 6. 定制化和 ODM 产品的保修期以合同约定为主。
- 7. 和本保修条例发生冲突的其他口头承诺等,参照本保修条例执行。
- 8. 我公司在产品制造、销售及使用上所担负的责任,均不应超过产品的原始成本。本公司不承担任何连带责任。
- 9. 本条款的解释权归本公司所拥有。